The Effects of Drought in the Huaibei Plain of China Due to Climate Change

Author:

Badji Ousmane1,Zhu Yonghua1,Lü Haishen1ORCID,Guédé Kanon Guédet1ORCID,Chen Tingxing1,Oumarou Abdoulaye1,Yao Kouassi Bienvenue Mikael Onan1,Brice Sika2

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

2. College of Environment, Hohai University, Nanjing 210098, China

Abstract

Damage from climate change is widespread throughout the world. This change has brought about calamities, the most prevalent of which is the emergence of numerous droughts which are increasingly threatening human lives. In this paper, we studied the spatial and temporal variations of drought under the effect of climate change in the Huaibei Plain, which is a very important agricultural zone in China. Drought has attracted increasing attention in research due to its heavy impact on agriculture, the environment, livelihood, and food security. The SPEI (Standardized Precipitation Evapotranspiration Index) has been used in this study to express and identify drought events in the Huaibei Plain due to climate change. A general circulation model (GCM), HadGEM2-AO, which was the most appropriate for the study area’s precipitation simulation, and three Representative Concentration Pathways (RCP), RCP 2.6, RCP 4.5, and RCP 8.5, were used to analyze and compare the drought effect for the baseline (1985–2017) and the future climate scenarios (2025–2090). At 3 and 6 months, the SPEI successfully detects agricultural drought in temporal and spatial variation. However, according to the analysis, more severe agricultural drought events are foreseen in the future than in the baseline because of climate change. SPEI performed better than SPI in detecting drought in the baseline and simulated data due to increased evapotranspiration. Between the SPEI-3 and SPEI-6, the Pearson coefficient correlation reveals a positive association. The Mann-Kendall test was used to cover the two studied periods in order to establish the drought trend. Both decreasing and increasing trends, in different timescales, were detected by Sen’s Slope in the baseline and future periods with all RCPs.

Funder

National Key Research and Development Program

NNSF

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3