The Vertical Distributions of Aerosol Optical Characteristics Based on Lidar in Nanyang City from 2021 to 2022

Author:

Zhang Miao123ORCID,Guo Si1,Wang Yunuo1,Chen Shiyong1,Chen Jinhan1,Chen Mingchun4,Bilal Muhammad5ORCID

Affiliation:

1. Academy of Remote Sensing Technology and Application, Nanyang Normal University, Wolong Road No. 1638, Nanyang 473061, China

2. Key Laboratory of Natural Disaster and Remote Sensing of Henan Province, Nanyang Normal University, Wolong Road No. 1638, Nanyang 473061, China

3. Engineering Research Center of Environmental Laser Remote Sensing Technology and Application of Henan Province, Nanyang Normal University, Wolong Road No. 1638, Nanyang 473061, China

4. Teacher Education College, Beijing Language and Culture University, Xueyuan Road No. 15, Beijing 100083, China

5. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

To investigate the vertical distribution of aerosol optical characteristics in Nanyang City, a ground-based dual-wavelength (532 nm and 355 nm) lidar system was developed for aerosol observation at the Nanyang Normal University Station (NYNU) from November 2021 to December 2022. Spatio-temporal dynamics information on vertical distributions of aerosol optical properties during polluted and non-polluted days was obtained. Aerosols were characterized by low altitudes (up to 2 km), thinner layers, and high-altitude (up to 4 km) thick layers during non-polluted and polluted days, with extinction coefficient values of ~0.03 km−1 and ~0.2 km−1, respectively. The mean values of the extinction coefficient at different altitudes (0~5 km) were all about ten-times higher on polluted days (0.04~0.19 km−1) than on non-polluted days (0.004~0.02 km−1). These results indicate that aerosol loadings and variations at different altitudes (0~5 km) were much higher and more prominent on polluted days than non-polluted days. The results show ten-times larger aerosol optical depth (AOD) values (0.4~0.6) on polluted days than on non-polluted days (0.05~0.08). At the same time, AOD values on both polluted and non-polluted days slightly decreased from 19:00 to 05:00, possibly due to dry depositions at nighttime. For the first time, this study established a ground-based lidar remote sensing system to investigate the vertical distribution of atmospheric aerosol optical characteristics in Henan Province. The experimental results can provide scientific dataset support for the local government to prevent and control air pollution.

Funder

the Programs for Science and Technology Development of Henan Province

the Nanyang Normal University Scientific Research Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3