Volatile Organic Compounds in the North China Plain: Characteristics, Sources, and Effects on Ozone Formation

Author:

Yang Xue12,Gao Luhong1,Zhao Shiyang2,Pan Guang1,Fan Guolan1,Xia Zhiyong1,Sun Xiaoyan1,Xu Hongyu1,Chen Yanjun1,Jin Xiaolong2

Affiliation:

1. Shandong Jinan Ecological Environment Monitoring Center, Jinan 250101, China

2. College of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

Enhanced volatile organic compounds (VOCs) observations were made on ozone-exceeding days in June 2020 in Linyi, China. A total of 69 VOCs were collected (1 alkyne, 29 alkanes, 10 alkenes, 14 aromatic hydrocarbons, and 15 oxygenated volatile organic compounds (OVOCs)). The average concentration of total VOCs (TVOCs) was 36.0 ± 0.66 ppb, and the top three VOCs components were alkanes, OVOCs, and aromatic hydrocarbons, which accounted for 40.75%, 27.02%, and 11.30%, respectively. Based on the positive matrix factorization (PMF) model, the main sources of VOCs in Linyi City were divided into vehicle exhaust sources (39.11%), biomass combustion sources (21.82%), oil and gas volatilization sources (21.46%), and solvent use sources (17.61%). The ozone formation potential (OFP) contribution rate was dominated by alkenes, OVOCs, and aromatics, with contribution rates of 26.37%, 25.30%, and 23.65%, respectively. The top six VOCs that contributed the most to the OFP were formaldehyde, acetaldehyde, 1-butene, butadiene, trans-2-butene, and propylene. The empirical kinetic modelling approach (EKMA) curve indicated that the in situ ozone (O3) production was limited by VOCs, and reducing the concentration of O3 precursors in accordance with the VOCs/NOx concentration ratio of 1.15 can control O3 pollution more effectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Doctoral Research Fund of Shandong Jianzhu University

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3