Characteristics and Sensitivity Analysis of Ozone Pollution in a Typical Inland City in China

Author:

Hua Xiaohui12,Wang Meng12,Yao Zhen12,Hao Run12,Wang Hailin12

Affiliation:

1. Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China

2. Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing 100037, China

Abstract

In this research, long-term monitoring data from 2020 to 2023 were used to characterize O3 pollution in a typical inland city in northwest China (34°21′ N 109°30′ E), which indicated that ozone pollution yielded typical regular fluctuations and high ozone concentrations from April to September were observed. Ozone varied in the range of 16–176 μg/m3, and maximum peaks were found usually at 14:00–17:00 in June and July. Correlation analysis showed a significant positive relationship between ozone and temperature, with correlation coefficients of 0.93. The wind speed exhibits a similar variation as ozone. Meanwhile, negative correlations were not so notably observed among ozone, humidity, VOCs, and NOx. Finally, the empirical kinetic model OZIPR (Ozone Isopleth Plotting Program for Research) was employed to analyze the sensitivity relationship among ozone and precursor compounds by calculating EMKA (Empirical Kinetics Modeling Approach) curves. The EKMA analysis results showed that during the whole ozone pollution period, ozone formation is mainly dominated by VOCs due to all the ratios of VOCs/NOx which fell in the VOCs control region. Therefore, VOCs should be priority controlled and more measures should be taken for better ozone pollution control abatement.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Municipal Research Institute of Environmental Protection

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3