Relative Humidity Impact on Organic New Particle Formation from Ozonolysis of α- and β-Pinene at Atmospherically Relevant Mixing Ratios

Author:

Snyder Christopher N.,Flueckiger Austin C.,Petrucci Giuseppe A.ORCID

Abstract

The impact of relative humidity (RH) on organic new particle formation (NPF) from ozonolysis of monoterpenes remains an area of active debate. Previous reports provide contradictory results indicating both depression and enhancement of NPF under conditions of moderate RH, while others do not indicate a potential impact. Only several reports have suggested that the effect may depend on absolute mixing ratio of the precursor volatile organic compound (VOC, ppbv). Herein we report on the impact of RH on NPF from dark ozonolysis of α- and β-pinene at mixing ratios ranging from 0.2 to 80 ppbv. We show that RH enhances NPF (by a factor of eight) at the lowest α-pinene mixing ratio, with a very strong dependence on α-pinene mixing ratio from 4 to 22 ppbv. At higher mixing ratios, the effect of RH plateaus, with resulting modest decreases in NPF. In the case of α- and β-pinene, NPF is enhanced at low mixing ratios due to a combination of chemistry, accelerated kinetics, and reduced partitioning of semi-volatile oxidation products to the particulate phase. Reduced partitioning would limit particle growth, permitting increased gas-phase concentrations of semi- and low-volatility products, which could favor NPF.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3