Nontrivial Impact of Relative Humidity on Organic New Particle Formation from Ozonolysis of cis-3-Hexenyl Acetate

Author:

Flueckiger Austin C.1ORCID,Snyder Christopher N.1,Petrucci Giuseppe A.1ORCID

Affiliation:

1. Department of Chemistry, The University of Vermont, 82 University Place, Burlington, VT 05405, USA

Abstract

The impact of relative humidity (RH) on organic new particle formation (NPF) from the ozonolysis of biogenic volatile organic compounds (BVOCs) remains an area of active debate. Previous reports provide contradictory results, indicating both the depression and enhancement of NPF under conditions of high RH. Herein, we report on the impact of RH on NPF from the dark ozonolysis of cis-3-hexenyl acetate (CHA), a green-leaf volatile (GLV) emitted by vegetation. We show that RH inhibits NPF by this BVOC, essentially shutting it down at RH levels > 1%. While the mechanism for the inhibition of NPF remains unclear, we demonstrate that it is likely not due to increased losses of CHA to the humid chamber walls. New oxidation products dominant under humid conditions are proposed that, based on estimated vapor pressures (VPs), should enhance NPF; however, it is possible that the vapor phase concentration of these low-volatility products is not sufficient to initiate NPF. Furthermore, the reaction of C3-excited state Criegee intermediates (CIs) with water may lead to the formation of small carboxylic acids that do not contribute to NPF. This hypothesis is supported by experiments with quaternary O3 + CHA + α-pinene + RH systems, which showed decreases in total α-pinene-derived NPF at ~0% RH and subsequent recovery at elevated RH.

Funder

National Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3