Time–Frequency Characteristics and SARIMA Forecasting of Atmospheric Water Vapor in East Asia

Author:

Tang Chaoli12ORCID,Tong Ziyue12,Wei Yuanyuan3ORCID,Wu Xin1,Tian Xiaomin1,Yang Jie1

Affiliation:

1. School of Electrical & Information Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China

3. School of Internet, Anhui University, Hefei 230039, China

Abstract

Given the increasing impact of extreme rainfall and flooding on human life, studying and predicting changes in atmospheric water vapor (AWV) becomes particularly important. This paper analyzes the moderate-resolution imaging spectroradiometer (MODIS) data of the East Asian region from January 2003 to February 2023. The AWV data are examined in the time and frequency domain using methods such as empirical orthogonal function (EOF), Mann–Kendall (MK) analysis, and others. Additionally, four prediction models are applied to forecast the monthly average AWV data for the next year. The accuracy of these models is evaluated using metrics such as mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The findings reveal several key insights: (1) The East Asian region exhibits highly variable seasonal variability in AWV, with identified mutation points after the MK test. (2) Spatial analysis shows high AWV data in the southern coastal areas of China, Thailand, Myanmar, Nansha Islands, and other regions during winter, while the Qinghai-Tibet Plateau region experiences low AWV during summer. (3) The first mode obtained through EOF decomposition contributes over 60% of the variance. Analysis of this mode reveals an increasing trend in AWV data for regions such as the Indian peninsula, Mongolia, and central and northeastern China over the past nine years. Conversely, the Bay of Bengal, Spratly Islands, eastern coast, and certain areas display a decreasing trend. (4) Employing the ensemble empirical mode decomposition (EEMD), the study identifies AWV data as a non-stationary series with an overall decreasing trend from 2003 to 2022. The filtered AWV series undergoes fast Fourier transform (FFT), uncovering periodicities of 2.6 years, 5 years, and 19 years. (5) Among the four forecasting models compared, the seasonal autoregressive integrated moving average model (SARIMA) demonstrates superior performance with the smallest MSE of 0.00782, MAE of 0.06977, RMSE of 0.08843, and the largest R2 value of 0.98454. These results clearly indicate that the SARIMA model provides the best fit. Therefore, the SARIMA forecasting model can be effectively utilized for forecasting AWV data, offering valuable insights for studying weather variability.

Funder

the Graduate Innovation Foundation of Anhui University of Science and Technology

the Graduate Student Academic Innovation Project of Anhui Province of China

the University Natural Science Research Project of Anhui Province of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3