Ensemble based deep learning model for prediction of integrated water vapor (IWV) using GPS and meteorological observations

Author:

Jadala Nirmala Bai1,Sridhar Miriyala1,Ratnam Devanaboyina Venkata1,Tummala Surya Narayana Murthy2

Affiliation:

1. Department of ECE , Koneru Lakshmaiah Education Foundation , Vaddeswaram, Guntur District , Guntur , Andhra Pradesh 522302 , India

2. Department of ECE , JNTU-GV College of Engineering , Vizianagaram , Andhra Pradesh , India

Abstract

Abstract Integrated water vapor (IWV) has been widely perceived through machine learning (ML) strategies. During this investigation, we employed IWV time series from weather stations to determine the oscillations and patterns with IWV across two latitudes namely VBIT, Hyderabad (India) and PWVUO station, Oregon (US). The GPS derived IWV and meteorological data such as pressure (P), temperature (T) and relative humidity (RH) dataset for the year 2014 has been taken from VBIT station and from PWVUO station for 2020. Five machine learning algorithms namely Optimized Ensemble (OE) model, Rational Quadratic Gaussian Process Regression model (RQ-GPR), Neural Networks model (NN), Cubic Support Vector Machine (CSVM) and Quadratic Support Vector Machine (QSVM) algorithms are used. The GPS derived IWV data revealed the maximum variation during summer monsoon period specifically in the month of July. The correlation analysis between GPS-IWV and optimized ensemble technique showed the highest correlation for the VBIT station with correlation coefficient as (ρ) = 99 % and at PWVUO station as (ρ) = 88 % for two different datasets. The residual analysis has also showed less variation to the optimized ensemble model. The performance metrics obtained for OE at VBIT station are mean absolute error (MAE) as 0.64 kg/m2, mean absolute percentage error (MAPE) as 3.80 % and root mean squared error (RMSE) as 0.94 kg/m2 and at PWVUO station the values are MAE = 1.91 kg/m2, MAPE = 11.76 % and RMSE as 1.97 kg/m2, respectively. The results explained that the OE method has shown a better performance compared to the remaining models.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3