Parameterization of Entrainment Rate for Cumulus Clouds with WRF Simulation

Author:

Guo Xiaohao12,Lin Huijuan1,Zhu Jinyao1,Wei Fenfen1

Affiliation:

1. Suzhou Meteorological Bureau, Suzhou 215131, China

2. China Meteorological Administration Aerosol-Cloud and Precipitation of Key Laboratory, Collaborative Innovation Center on Forecast and Education of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

By using Weather Research and Forecasting Model (WRF) to simulate a southwest vortex precipitation process, this work studies the correlations between entrainment rate (λ) and dynamical parameters in the cloud and further fit λ. We relate the probability density distribution (PDF) to the parameterization of λ and find that the greater the probability, the larger the slope of the logarithmic liner function. The slope of the log-linear fitting function in fitting decreases for developing and enhancing cumulus clouds, which is related to the increase in updraft motion and the decrease in λ. Then, we group clouds according to cloud top heights and calculate average λ and dynamic parameters, and the results indicate that when only one dynamic parameter is used, vertical wind velocity (w) is more suitable than buoyancy (B) to be used to fit λ. The fitting functions combing one single parameter and more parameters by principal components regression are compared with two traditional schemes, and we found that λ obtained by our fitting schemes are between the two traditional schemes. Because the principal component regression method takes into account the interaction between more dynamic factors and entrainment, the fitting function, including w and B, is suitable to be applied to fit λ in the parameterization scheme for cumulus clouds.

Funder

Suzhou science and technology program project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3