Effect of Convective Entrainment/Detrainment on the Simulation of the Tropical Precipitation Diurnal Cycle*

Author:

Wang Yuqing1,Zhou Li1,Hamilton Kevin1

Affiliation:

1. International Pacific Research Center, and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract A regional atmospheric model (RegCM) developed at the International Pacific Research Center (IPRC) is used to investigate the effect of assumed fractional convective entrainment/detrainment rates in the Tiedtke mass flux convective parameterization scheme on the simulated diurnal cycle of precipitation over the Maritime Continent region. Results are compared with observations based on 7 yr of the Tropical Rainfall Measuring Mission (TRMM) satellite measurements. In a control experiment with the default fractional convective entrainment/detrainment rates, the model produces results typical of most other current regional and global atmospheric models, namely a diurnal cycle with precipitation rates over land that peak too early in the day and with an unrealistically large diurnal range. Two sensitivity experiments were conducted in which the fractional entrainment/detrainment rates were increased in the deep and shallow convection parameterizations, respectively. Both of these modifications slightly delay the time of the rainfall-rate peak during the day and reduce the diurnal amplitude of precipitation, thus improving the simulation of precipitation diurnal cycle to some degree, but better results are obtained when the assumed entrainment/detrainment rates for shallow convection are increased to the value consistent with the published results from a large eddy simulation (LES) study. It is shown that increasing the entrainment/detrainment rates would prolong the development and reduce the strength of deep convection, thus delaying the mature phase and reducing the amplitude of the convective precipitation diurnal cycle over the land. In addition to the improvement in the simulation of the precipitation diurnal cycle, convective entrainment/detrainment rates also affect the simulation of temporal variability of daily mean precipitation and the partitioning of stratiform and convective rainfall in the model. The simulation of the observed offshore migration of the diurnal signal is realistic in some regions but is poor in some other regions. This discrepancy seems not to be related to the convective lateral entrainment/detrainment rate but could be due to the insufficient model resolution used in this study that is too coarse to resolve the complex land–sea contrast.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3