Abstract
Electrical impedance tomography (EIT) is based on the physical principle of bioimpedance defined as the opposition that biological tissues exhibit to the flow of a rotating alternating electrical current. Consequently, here, we propose studying the characterization and classification of bioimpedance patterns based on EIT by measuring, on the forearm with eight electrodes in a non-invasive way, the potential drops resulting from the execution of six hand gestures. The starting point was the acquisition of bioimpedance patterns studied by means of principal component analysis (PCA), validated through the cross-validation technique, and classified using the k-nearest neighbor (kNN) classification algorithm. As a result, it is concluded that reduction and classification is feasible, with a sensitivity of 0.89 in the worst case, for each of the reduced bioimpedance patterns, leading to the following direct advantage: a reduction in the numbers of electrodes and electronics required. In this work, bioimpedance patterns were investigated for monitoring subjects’ mobility, where, generally, these solutions are based on a sensor system with moving parts that suffer from significant problems of wear, lack of adaptability to the patient, and lack of resolution. Whereas, the proposal implemented in this prototype, based on the so-called electrical impedance tomography, does not have these problems.
Funder
Agencia Estatal de Investigación
ERDF
Subject
Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献