Electrical Impedance Tomography – Image Reconstruction using Population-based Optimisation Algorithms

Author:

Khan Talha Ali1,Ling SAI HO2,Rizvi Arslan A.3

Affiliation:

1. University of Europe for Applied Sciences

2. University of Technology Sydney

3. Xi'an Jiaotong University

Abstract

Abstract Preventing living tissues' direct exposure to ionising radiation has resulted in tremendous growth in medical imaging and e-health, enhancing intensive care of perilous patients and helping to improve quality of life. Moreover, the practice of image-reconstruction instruments that utilise ionising radiation significantly impacts the patient's health. Prolonged or frequent exposure to ionising radiation is linked to several illnesses like cancer. These factors urged the advancement of non-invasive approaches, for instance, Electrical Impedance Tomography (EIT), a portable, non-invasive, low-cost, and safe imaging method. EIT image reconstruction still demands more exploitation, as it is an inverse and ill-conditioned problem. Numerous numerical techniques are used to answer this problem without producing anatomically unpredictable outcomes. Evolutionary Computational techniques can be used as substitutes for the conventional methods that usually create low-resolution blurry images. EIT reconstruction techniques optimise the relative error of reconstruction using population-based optimisation methods presented in this work. Three advanced optimisation methods have been developed to facilitate the iterative procedure for avoiding anatomically erratic solutions. Three different optimising techniques, namely, a) Advanced Particle Swarm Optimisation Algorithm (APSO), b) Advanced Gravitational Search Algorithm (AGSA), and c) Hybrid Gravitational Search Particle Swarm Optimization Algorithm (HGSPSO), are used. By utilising the advantages of these proposed techniques, the performance in terms of convergence and solution stability is improved. EIT images were obtained from the EIDORS library database for two case studies. The image reconstruction was optimised using the three proposed algorithms. EIDORS library was used for generating and solving forward and reverse problems. Two case studies were undertaken, i.e. circular tank simulation and gastric emptying. The results thus obtained are analysed and presented as a real-world application of population-based optimisation methods. Results obtained from the proposed methods are quantitatively assessed with ground truth images using the relative mean squared error, confirming that a low error value is reached in the results. HGSPSO algorithm has superior performance compared to the other proposed methods in terms of solution quality and stability.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3