Hybrid-Enhanced Siamese Similarity Models in Ligand-Based Virtual Screen

Author:

Altalib Mohammed KhaldoonORCID,Salim Naomie

Abstract

Information technology has become an integral aspect of the drug development process. The virtual screening process (VS) is a computational technique for screening chemical compounds in a reasonable amount of time and cost. The similarity search is one of the primary tasks in VS that estimates a molecule’s similarity. It is predicated on the idea that molecules with similar structures may also have similar activities. Many techniques for comparing the biological similarity between a target compound and each compound in the database have been established. Although the approaches have a strong performance, particularly when dealing with molecules with homogenous active structural, they are not enough good when dealing with structurally heterogeneous compounds. The previous works examined many deep learning methods in the enhanced Siamese similarity model and demonstrated that the Enhanced Siamese Multi-Layer Perceptron similarity model (SMLP) and the Siamese Convolutional Neural Network-one dimension similarity model (SCNN1D) have good outcomes when dealing with structurally heterogeneous molecules. To further improve the retrieval effectiveness of the similarity model, we incorporate the best two models in one hybrid model. The reason is that each method gives good results in some classes, so combining them in one hybrid model may improve the retrieval recall. Many designs of the hybrid models will be tested in this study. Several experiments on real-world data sets were conducted, and the findings demonstrated that the new approaches outperformed the previous method.

Funder

Ministry of Higher Education

Malaysia Big Data Research Excellence Consortium

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3