GOProFormer: A Multi-Modal Transformer Method for Gene Ontology Protein Function Prediction

Author:

Kabir AnowarulORCID,Shehu AmardaORCID

Abstract

Protein Language Models (PLMs) are shown to be capable of learning sequence representations useful for various prediction tasks, from subcellular localization, evolutionary relationships, family membership, and more. They have yet to be demonstrated useful for protein function prediction. In particular, the problem of automatic annotation of proteins under the Gene Ontology (GO) framework remains open. This paper makes two key contributions. It debuts a novel method that leverages the transformer architecture in two ways. A sequence transformer encodes protein sequences in a task-agnostic feature space. A graph transformer learns a representation of GO terms while respecting their hierarchical relationships. The learned sequence and GO terms representations are combined and utilized for multi-label classification, with the labels corresponding to GO terms. The method is shown superior over recent representative GO prediction methods. The second major contribution in this paper is a deep investigation of different ways of constructing training and testing datasets. The paper shows that existing approaches under- or over-estimate the generalization power of a model. A novel approach is proposed to address these issues, resulting in a new benchmark dataset to rigorously evaluate and compare methods and advance the state-of-the-art.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference33 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., and Polosukhin, I. (2017). Attention Is All You Need. arXiv.

2. Heinzinger, M., Elnaggar, A., Wang, Y., Dallago, C., Nechaev, D., Matthes, F., and Rost, B. (2019). Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinform., 20.

3. Learning the protein language: Evolution, structure, and function;Cell Syst.,2021

4. ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing;IEEE Trans. Patern Anal. Mach. Intell.,2021

5. Light attention predicts protein location from the language of life;Bioinform. Adv.,2021

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PANDA-3D: protein function prediction based on AlphaFold models;NAR Genomics and Bioinformatics;2024-07-02

2. On knowing a gene: A distributional hypothesis of gene function;Cell Systems;2024-06

3. Uncertainty Measure-Based Incremental Feature Selection For Hierarchical Classification;International Journal of Fuzzy Systems;2024-05-18

4. FAPM: Functional Annotation of Proteins using Multi-Modal Models Beyond Structural Modeling;2024-05-10

5. Deep Multi-Modal Approach for Protein Function Prediction and Classification;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3