Price Prediction of Bitcoin Based on Adaptive Feature Selection and Model Optimization

Author:

Zhu Yingjie1,Ma Jiageng1ORCID,Gu Fangqing2ORCID,Wang Jie1,Li Zhijuan1ORCID,Zhang Youyao3ORCID,Xu Jiani4,Li Yifan5ORCID,Wang Yiwen1ORCID,Yang Xiangqun1ORCID

Affiliation:

1. School of Science, Changchun University, Changchun 130022, China

2. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China

3. School of Philosophy, Shaanxi Normal University, Xi’an 710119, China

4. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China

5. HSBC Business School, Peking University, Beijing 100871, China

Abstract

Bitcoin is one of the most successful cryptocurrencies, and research on price predictions is receiving more attention. To predict Bitcoin price fluctuations better and more effectively, it is necessary to establish a more abundant index system and prediction model with a better prediction effect. In this study, a combined prediction model with twin support vector regression was used as the main model. Twenty-seven factors related to Bitcoin prices were collected. Some of the factors that have the greatest impact on Bitcoin prices were selected by using the XGBoost algorithm and random forest algorithm. The combined prediction model with support vector regression (SVR), least-squares support vector regression (LSSVR), and twin support vector regression (TWSVR) was used to predict the Bitcoin price. Since the model’s hyperparameters have a great impact on prediction accuracy and algorithm performance, we used the whale optimization algorithm (WOA) and particle swarm optimization algorithm (PSO) to optimize the hyperparameters of the model. The experimental results show that the combined model, XGBoost-WOA-TWSVR, has the best prediction effect, and the EVS score of this model is significantly better than that of the traditional statistical model. In addition, our study verifies that twin support vector regression has advantages in both prediction effect and computation speed.

Funder

National Natural Science Foundation of China

Ministry of Education China University Industry University Research Project

Education Science of the 14th Five-Year Plan Project of Jilin Province

Department of Education Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3