Li–Yau-Type Gradient Estimate along Geometric Flow

Author:

Hui Shyamal Kumar1ORCID,Abolarinwa Abimbola2ORCID,Khan Meraj Ali3,Mofarreh Fatemah4ORCID,Saha Apurba1ORCID,Bhattacharyya Sujit1ORCID

Affiliation:

1. Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, India

2. Department of Mathematics, University of Lagos, Akoka 101017, Lagos State, Nigeria

3. Department of Mathematics and Statistics, Imam Muhammad Ibn Saud Islamic University, Riyadh 11566, Saudi Arabia

4. Department of Mathematical Science, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11546, Saudi Arabia

Abstract

In this article we derive a Li–Yau-type gradient estimate for a generalized weighted parabolic heat equation with potential on a weighted Riemannian manifold evolving by a geometric flow. As an application, a Harnack-type inequality is also derived in the end.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

1. Global and local behavior of positive solutions of nonlinear elliptic equations;Gidas;Commun. Pure Appl. Math.,1981

2. The Harnack estimate for the Ricci flow;Hamilton;J. Differ. Geom.,1993

3. On the parabolic kernel of the Schrodinger operator;Li;Acta Math.,1986

4. Perelman, G. (2002). The entropy formula for the Ricci flow and its geometric applications. arXiv.

5. Perelman, G. (2003). Ricci flow with surgery on three-manifolds. arXiv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3