Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along Geometric Flow and Applications

Author:

Li Yanlin1ORCID,Bhattacharyya Sujit2ORCID,Azami Shahroud3ORCID,Saha Apurba2ORCID,Hui Shyamal Kumar2ORCID

Affiliation:

1. School of Mathematics, Key Laboratory of Cryptography of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China

2. Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India

3. Department of Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin 34148-96818, Iran

Abstract

The method of gradient estimation for the heat-type equation using the Harnack quantity is a classical approach used for understanding the nature of the solution of these heat-type equations. Most of the studies in this field involve the Laplace–Beltrami operator, but in our case, we studied the weighted heat equation that involves weighted Laplacian. This produces a number of terms involving the weight function. Thus, in this article, we derive the Harnack estimate for a positive solution of a weighted nonlinear parabolic heat equation on a weighted Riemannian manifold evolving under a geometric flow. Applying this estimation, we derive the Li–Yau-type gradient estimation and Harnack-type inequality for the positive solution. A monotonicity formula for the entropy functional regarding the estimation is derived. We specify our results for various different flows. Our results generalize some works.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference82 articles.

1. Harnack, A., Leipzig, V., and Teubner, G. (2016). Die Grundlagen der Theorie des Logarithmischen Potentiales und der Eindeutigen Potentialfunktion in der Ebene, Wentworth Press.

2. On the Harnack inequality for linear elliptic equations;Serrin;J. d’Analyse Math.,1995

3. On Harnack’s theorem for elliptic differential equations;Moser;Commun. Pure Appl. Math.,1961

4. A Harnack inequality for parabolic differential equations;Moser;Commun. Pure Appl. Math.,1964

5. On the parabolic kernel of the Schrodinger operator;Li;Acta Math.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3