Analytical Model for Early Design Stage of Cable-Stayed Suspension Bridges Based on Hellinger–Reissner Variational Method

Author:

Feng QianORCID,Wei Peng,Lou Junbin,Wang Daiwei,Cai JinbiaoORCID,Xu RongqiaoORCID

Abstract

The cable-stayed suspension bridge is one type of bridge that has been increasingly applied to bridge engineering, especially in cross-sea projects. However, the complex combined system of this type of bridge makes it quite difficult for researchers to make a quick decision of the parameter values during the design stage. The Hellinger–Reissner method is applied here to analyze the deformation and force of the structural members in the bridge. The advantage of this method is that the solving of deformation and force is independent of each other, which would enhance the accuracy of the final results. Different load conditions are also considered in the analysis. The results from the present method are compared with test results and finite element analysis, and show good agreements. It implies that the Hellinger–Reissner is a comparatively more efficient method to help designers choose the key parameters for cable-stayed suspension bridges.

Funder

National Natural Science Foundation of China

"Pioneer" and "Leading Goose" R&D Program of Zhejiang

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3