Evaluating the Hyperspectral Sensitivity of the Differenced Normalized Burn Ratio for Assessing Fire Severity

Author:

van Gerrevink Max J.ORCID,Veraverbeke SanderORCID

Abstract

Fire severity represents fire-induced environmental changes and is an important variable for modeling fire emissions and planning post-fire rehabilitation. Remotely sensed fire severity is traditionally evaluated using the differenced normalized burn ratio (dNBR) derived from multispectral imagery. This spectral index is based on bi-temporal differenced reflectance changes caused by fires in the near-infrared (NIR) and short-wave infrared (SWIR) spectral regions. Our study aims to evaluate the spectral sensitivity of the dNBR using hyperspectral imagery by identifying the optimal bi-spectral NIR SWIR combination. This assessment made use of a rare opportunity arising from the pre- and post-fire airborne image acquisitions over the 2013 Rim and 2014 King fires in California with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. The 224 contiguous bands of this sensor allow for 5760 unique combinations of the dNBR at a high spatial resolution of approximately 15 m. The performance of the hyperspectral dNBR was assessed by comparison against field data and the spectral optimality statistic. The field data is composed of 83 in situ measurements of fire severity using the Geometrically structured Composite Burn Index (GeoCBI) protocol. The optimality statistic ranges between zero and one, with one denoting an optimal measurement of the fire-induced spectral change. We also combined the field and optimality assessments into a combined score. The hyperspectral dNBR combinations demonstrated strong relationships with GeoCBI field data. The best performance of the dNBR combination was derived from bands 63, centered at 0.962 µm, and 218, centered at 2.382 µm. This bi-spectral combination yielded a strong relationship with GeoCBI field data of R2 = 0.70 based on a saturated growth model and a median spectral index optimality statistic of 0.31. Our hyperspectral sensitivity analysis revealed optimal NIR and SWIR bands for the composition of the dNBR that are outside the ranges of the NIR and SWIR bands of the Landsat 8 and Sentinel-2 sensors. With the launch of the Precursore Iperspettrale Della Missione Applicativa (PRISMA) in 2019 and several planned spaceborne hyperspectral missions, such as the Environmental Mapping and Analysis Program (EnMAP) and Surface Biology and Geology (SBG), our study provides a timely assessment of the potential and sensitivity of hyperspectral data for assessing fire severity.

Funder

European Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3