The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires

Author:

Chafer Chris J.,Noonan Mark,Macnaught Eloys

Abstract

Using pre- and post-fire satellite imagery from SPOT2, we examined the fire severity and intensity of the Christmas 2001 wildfires in the greater Sydney Basin, Australia. We computed a Normalised Difference Vegetation Index (NDVI) from the two satellite images captured before (November 2001) and after (January 2002) the wildfires, then subtracted the later from the former to produce a difference image (NDVIdiff) which was subsequently classified into six fire severity classes (unburnt, low, moderate, high, very high and extreme severity). We then tested the fire severity classification on 342 sample sites within the 225 000ha fire affected area using a qualitative visual assessment guide. We found that the NDVIdiff classification produced an accuracy of at least 88% (K hat = 0.86), with the greatest discrepancy being between the low and moderate classification. Knowledge of rate of spread over some of the affected area, coupled with a complete knowledge of fuel loads, was used to retrospectively model fire intensity, which in areas of extreme fire intensity, produced heat energy levels exceeding 70 000 kW m–1. Importantly, we found no positive effect of topography on fire severity, in fact finding an inverse relationship between slope and fire severity and no effect due to aspect. Further analysis showed that flat to moderate slopes less than 18° across all aspects suffered the greatest vegetal destruction, and there was no relationship between north-westerly aspects and fire severity. We also introduce a relatively simple method for estimating fuel load biomass using a combination of satellite image and rapid field assessment. We found 79% accuracy for this method based on 125 sample sites. It is postulated that this type of analysis can greatly improve our understanding of the spatial impact of fire, how natural areas within the fire ground were impacted, and how remote sensing and GIS technologies can be efficiently used in fire management planning and post-fire analysis.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3