Optimization of the NRCS Sampling at the Sea Wind Retrieval by the Airborne Rotating-Beam Scatterometer Mounted under Fuselage

Author:

Nekrasov AlexeyORCID,Khachaturian AlenaORCID,Vorobev EvgeniiORCID

Abstract

The optimization of normalized radar cross-section (NRCS) sampling by a scatterometer allows an increase in the accuracy of the wind retrieval over the water surface and a decrease in the time of the measurement. Here, we investigate the possibility of improving wind vector measurement with an airborne rotating-beam scatterometer mounted under the fuselage. For this purpose, we investigated NRCS sampling at various incidence angles, and the possibility of using NRCS samples obtained during simultaneous measurement at different incidence angles to perform wind retrieval. The proposed wind algorithms are based on a geophysical model function (GMF). Sea wind retrieval was carried out using Monte Carlo simulations with consideration of a single incidence angle or combinations of several incidence angles. The incidence angles of interest were 30°, 35°, 40°, 45°, 50°, 55°, and 60°. The simulation showed that the wind speed error decreased with an increase in the incidence angle, and the wind direction error tended to decrease with an increase in the incidence angle. The single incidence angle case is characterized by higher maximum wind retrieval errors but allows for a higher maximum altitude of the wind retrieval method’s applicability to be achieved. The use of several neighboring incidence angles allows a better wind vector retrieval accuracy to be achieved. The combinations of three and four incidence angles provided the lowest maximum wind speed and direction errors in the range of the incidence angles from 45° to 60° but, unfortunately, provide the lowest maximum altitude of applicability of the wind retrieval method. At the same time, the combination of two incidence angles is characterized by slightly higher maximum wind retrieval errors than in the cases of three and four incidence angles, but they are lower than in the case of the single incidence angle. Moreover, the two incidence angles’ combination is a simpler way to decrease the wind retrieval errors, especially for measurement near an incidence angle of 30°, providing nearly the highest maximum altitude of the wind retrieval method applicability. The results obtained can be used to enhance existing airborne radars and in the development of new remote sensing systems.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3