Effects of Ultrasound versus Pasteurization on Whey–Oat Beverage Processing: Quality and Antioxidative Properties

Author:

Herrera-Ponce Ana L.,Salmeron-Ochoa IvanORCID,Rodriguez-Figueroa Jose C.,Santellano-Estrada EduardoORCID,Garcia-Galicia Ivan A.ORCID,Vargas-Bello-Pérez EinarORCID,Alarcon-Rojo Alma D.ORCID

Abstract

The consumption of functional beverages is rapidly increasing. The improvement in the functional properties of whey after the application of ultrasound is due to the release of bioactive peptides that have antioxidant properties, among others. Bioactive peptides with antioxidant activity have also been found in oats, stimulating the study of whey beverages formulated with oats to obtain functional products. The aim of this study was to determine the influence of ultrasound (24 kHz) at 20 °C for 15 min at 23 W and 154 W on the quality and functional properties of whey–oat (50:50 v/v) beverages and compare it with pasteurization at 65 °C for 30 min (LTLT). Non-significant effect (p > 0.05) of ultrasound intensity (23 W and 154 W) was observed on the physicochemical characteristics and the proximal composition of the whey–oat beverages. The sonicated beverages showed a greater tendency to green and yellow color (p < 0.05), higher fat content (p < 0.05), and less ash and carbohydrates (p < 0.05) than the pasteurized beverage. The antioxidant activity of the mM Trolox equivalent/mL of the sonicated beverages was higher (p < 0.05) (4.24 and 4.27 for 23 W and 54 W, respectively) compared to that of the pasteurized beverage (4.12). It is concluded that ultrasound is superior to pasteurization in improving the antioxidant activity of whey–oat beverages without having a detrimental impact on the proximal composition and physicochemical quality. Future studies should evaluate more functional parameters and determine the shelf life of sonicated whey–oat beverages.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3