Author:
Liu Yuhao,Sun Xiaohan,Wang Guoquan,Turco Michael J.,Agudelo Gonzalo,Bao Yan,Zhao Ruibin,Shen Shuilong
Abstract
The Long Point Fault is one of the most active urban faults in Houston, Texas, which belong to a complex system of normal growth faults along the Texas Gulf Coast. To assess the activity of the Long Point Fault, a GPS array with 12 permanent stations was installed along the two sides of the 16-km-long fault scarp in 2013. GPS datasets were processed with the Precise Point Positioning (PPP) and Double-Difference (DD) methods. The daily PPP solutions with respect to the International Global Navigation Satellite System (GNSS) Reference Frame 2014 (IGS14) were converted to the Stable Houston Reference Frame (Houston16). The six-year continuous GPS observations indicate that the Long Point Fault is currently inactive, with the rates of down-dip-slip and along-strike-slip being below 1 mm/year. The Long Point Fault area is experiencing moderate subsidence varying from 5 to 11 mm/year and a coherent horizontal movement towards the northwest at a rate of approximately 2 to 4 mm/year. The horizontal movement is induced by the subsidence bowl that has been developing since the 1980s in the Jersey Village area. Current surficial damages in the Long Point Fault area are more likely caused by ongoing uneven subsidence and its induced horizontal strains, as well as the significant seasonal ground deformation, rather than deep-seated or tectonic-controlled fault movements. The results from this study suggest a cause-and-effect relationship between groundwater withdrawals and local faulting, which is pertinent to plans for future urban development, use of groundwater resources, and minimization of urban geological hazards.
Subject
General Earth and Planetary Sciences
Reference62 articles.
1. Local Subsidence of the Goose Creek Oil Field
2. Active faults, subsidence, and foundation problems in the Houston, Texas, area;Weaver,1962
3. Active surface faulting in the Houston area, Texas;Sheets;HGS Bull.,1971
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献