Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data

Author:

Liu Xue,de Sherbinin AlexORCID,Zhan Yanni

Abstract

Urbanization poses significant challenges on sustainable development, disaster resilience, climate change mitigation, and environmental and resource management. Accurate urban extent datasets at large spatial scales are essential for researchers and policymakers to better understand urbanization dynamics and its socioeconomic drivers and impacts. While high-resolution urban extent data products - including the Global Human Settlements Layer (GHSL), the Global Man-Made Impervious Surface (GMIS), the Global Human Built-Up and Settlement Extent (HBASE), and the Global Urban Footprint (GUF) - have recently become available, intermediate-resolution urban extent data products including the 1 km SEDAC’s Global Rural-Urban Mapping Project (GRUMP), MODIS 1km, and MODIS 500 m still have many users and have been demonstrated in a recent study to be more appropriate in urbanization process analysis (around 500 m resolution) than those at higher resolutions (30 m). The objective of this study is to improve large-scale urban extent mapping at an intermediate resolution (500 m) using machine learning methods through combining the complementary nighttime Visible Infrared Imaging Radiometer Suite (VIIRS) and daytime Moderate Resolution Imaging Spectroradiometer (MODIS) data, taking the conterminous United States (CONUS) as the study area. The effectiveness of commonly-used machine learning methods, including random forest (RF), gradient boosting machine (GBM), neural network (NN), and their ensemble (ESB), has been explored. Our results show that these machine learning methods can achieve similar high accuracies across all accuracy metrics (>95% overall accuracy, >98% producer’s accuracy, and >92% user’s accuracy) with Kappa coefficients greater than 0.90, which have not been achieved in the existing data products or by previous studies; the ESB is not able to produce significantly better accuracies than individual machine learning methods; the total misclassifications generated by GBM are more than those generated by RF, NN, and ESB by 14%, 16%, and 11%, respectively, with NN having the least total misclassifications. This indicates that using these machine learning methods, especially NN and RF, with the combination of VIIRS nighttime light and MODIS daytime normalized difference vegetation index (NDVI) data, high accuracy intermediate-resolution urban extent data products at large spatial scales can be achieved. The methodology has the potential to be applied to annual continental-to-global scale urban extent mapping at intermediate resolutions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3