Feature Decomposition-Optimization-Reorganization Network for Building Change Detection in Remote Sensing Images

Author:

Ye YuanxinORCID,Zhou LiangORCID,Zhu Bai,Yang Chao,Sun Miaomiao,Fan Jianwei,Fu ZhitaoORCID

Abstract

Building change detection plays an imperative role in urban construction and development. Although the deep neural network has achieved tremendous success in remote sensing image building change detection, it is still fraught with the problem of generating broken detection boundaries and separation of dense buildings, which tends to produce saw-tooth boundaries. In this work, we propose a feature decomposition-optimization-reorganization network for building change detection. The main contribution of the proposed network is that it performs change detection by respectively modeling the main body and edge features of buildings, which is based on the characteristics that the similarity between the main body pixels is strong but weak between the edge pixels. Firstly, we employ a siamese ResNet structure to extract dual-temporal multi-scale difference features on the original remote sensing images. Subsequently, a flow field is built to separate the main body and edge features. Thereafter, a feature optimization module is designed to refine the main body and edge features using the main body and edge ground truth. Finally, we reorganize the optimized main body and edge features to obtain the output results. These constitute a complete end-to-end building change detection framework. The publicly available building dataset LEVIR-CD is employed to evaluate the change detection performance of our network. The experimental results show that the proposed method can accurately identify the boundaries of changed buildings, and obtain better results compared with the current state-of-the-art methods based on the U-Net structure or by combining spatial-temporal attention mechanisms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3