A Review of Deep-Learning Methods for Change Detection in Multispectral Remote Sensing Images

Author:

Parelius Eleonora Jonasova1ORCID

Affiliation:

1. Norwegian Defence Research Establishment (FFI), NO-2007 Kjeller, Norway

Abstract

Remote sensing is a tool of interest for a large variety of applications. It is becoming increasingly more useful with the growing amount of available remote sensing data. However, the large amount of data also leads to a need for improved automated analysis. Deep learning is a natural candidate for solving this need. Change detection in remote sensing is a rapidly evolving area of interest that is relevant for a number of fields. Recent years have seen a large number of publications and progress, even though the challenge is far from solved. This review focuses on deep learning applied to the task of change detection in multispectral remote-sensing images. It provides an overview of open datasets designed for change detection as well as a discussion of selected models developed for this task—including supervised, semi-supervised and unsupervised. Furthermore, the challenges and trends in the field are reviewed, and possible future developments are considered.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behaviors of first-order optimizers in the context of sparse data and sparse models: A comparative study;Digital Signal Processing;2024-10

2. Change detection of multisource remote sensing images: a review;International Journal of Digital Earth;2024-09-09

3. A novel deep learning change detection approach for estimating spatiotemporal crop field variations from Sentinel-2 imagery;Remote Sensing Applications: Society and Environment;2024-08

4. LULC Change Detection Using Combined Machine and Deep Learning Classifiers;2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP);2024-07-11

5. Unsupervised Multiclass Change Detection and Mapping Using Deep Neural Network;2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP);2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3