Abstract
The wave data measured by CFOSAT (China France Oceanography Satellite) have been validated mainly based on numerical model outputs and altimetry products on a global scale. It is still necessary to further calibrate the data for specific regions, e.g., the southern South China Sea. This study analyses the practicability of calibrating the dominant wavelength by using artificial neural networks and mean impact value analysis based on two sets of buoy data with a 2-year observation period and contemporaneous ERA5 reanalysis data. The artificial neural network modeling experiments are repeated 1000 times randomly by Monte Carlo methods to avoid sampling uncertainty. Both experimental results based on the random sampling method and chronological sampling method are performed. Independent buoy observations are used to validate the calibration model. The results show that although there are obvious differences between the CFOSAT wavelength data and the field observations, the parameters observed by the satellite itself can effectively calibrate the data. In addition to the wavelength, nadir significant wave height, nadir wind speed, and the distance between the calibration point and satellite observation point are the most important parameters for the calibration. Accurate data from other sources, such as ERA5, would be helpful to further improve the calibration results. The variable contributing the most to the calibration effect is the mean wave period, which virtually provides relatively accurate wavelength information for the calibration network. These results verify the possibility of synchronous self-calibration for the CFOSAT wavelength data and provide a reference for the further calibration of the satellite products in other regions.
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献