Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters

Author:

Xu Jingwei123ORCID,Wu Huanping4,Zhi Xiefei1,Koldunov Nikolay V.5,Zhang Xiuzhi4,Xu Ying6ORCID,Zhang Yangyang1,Guo Maohua2,Kong Lisha4,Fraedrich Klaus3

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Joint Center for Data Assimilation Research and Applications, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China

2. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China

3. Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany

4. National Climate Centre, Beijing 100081, China

5. Alfred Wegener Institute (AWI), 27568 Bremerhaven, Germany

6. National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China

Abstract

Climate data derived from long-term, multisource altimeter significant wave height (SWH) measurements are more valuable than those obtained from a single altimeter source. Such data facilitate exploration of long-term air–sea momentum transfer and more comprehensive investigation of weather system dynamics processes over the ocean. Despite the deployment of the first satellite in the Chinese Haiyang-2 (HY-2) series more than 12 years ago, validation and integration of SWH data from China’s offshore waters, derived using Chinese altimeters, have been limited. This study constructed a high-resolution, long-term, multisource gridded SWH climate dataset using along-track data from the HY-2 series, CFOSAT, Jason-2, Jason-3, and Cryosat-2 altimeters. Validation against observations from 31 buoys covering China’s offshore waters indicated that the SWH variances from HY-2A, HY-2B, HY-2C, CFOSAT, and Jason-3 altimeters correlated well with observations, with a temporal correlation coefficient of approximately 0.95 (except HY-2A, correlation: 0.89). These SWH measurements generally showed a robust linear relationship with the buoy data. Additionally, cross-calibration between Jason-3 and the HY-2A, HY-2B, HY-2C, and CFOSAT altimeters also demonstrated a typically linear relationship for SWH > 6.0 m. Using this relationship, the SWH data were linearly corrected and integrated into a 10 d mean, long-term, multisource altimeter gridded SWH dataset. Compared with in situ observations, the merged 10 d mean SWHs are more accurate and closely match the observations, with temporal correlation coefficients improving from 0.87 to 0.90 and bias decreasing from 0.28 to 0.03 m. The merged gridded SWHs effectively represent the local spatial distribution of SWH. This study revealed the importance of observational data in the process of merging and recalibrating long-term multisource altimeter SWH datasets, particularly before their application in specific ocean regions.

Funder

National Natural Science Foundation of China

Key Laboratory of Space Ocean Remote Sensing and Application, MNR

China Special Fund for Meteorological Research in the Public Interest

German Research Foundation

“the Priority Academic Program Development of Jiangsu Higher Education Institutions”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3