Personalization of Electric Vehicle Accelerating Behavior Based on Motor Torque Adjustment to Improve Individual Driving Satisfaction

Author:

Kim HaksuORCID

Abstract

As worldwide vehicle CO2 emission regulations have been becoming more stringent, electric vehicles are regarded as one of the main development trends for the future automotive industry. Compared to conventional internal combustion engines, electric vehicles can generate a wider variety of longitudinal behaviors based on their high-performance motors and regenerative braking systems. The longitudinal behavior of a vehicle affects the driver’s driving satisfaction. Notably, each driver has their own driving style and as such demands a different performance for the vehicle. Therefore, personalization studies have been conducted in attempts to reduce the individual driving heterogeneity and thus improve driving satisfaction. In this respect, this paper first investigates a quantitative characterization of individual driving styles and then proposes a personalization algorithm of accelerating behavior of electric vehicles. The quantitative characterization determines the statistical expected value of the personal accelerating features. The accelerating features include physical values that can express acceleration behaviors and display different tendencies depending on the driving style. The quantified features are applied to calculate the correction factors for the target torque of the traction motor controller of electric vehicles. This driver-specific correction provides satisfactory propulsion performance for each driver. The proposed algorithm was validated through simulations. The results show that the proposed motor torque adjustment can reproduce different acceleration behaviors for an identical accelerator pedal input.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC

2. CO2 Emissions from New Passenger Cars in Europe: Car Manufacturers’ Performance in 2019;Tietge,2020

3. Clean Mobility: New CO2 Emission Standards for Cars and Vans Adoptedhttps://ec.europa.eu/clima/news/clean-mobility-new-co2-emission-standards-cars-and-vans-adopted_en

4. Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3