Model Predictive Direct Torque Control and Fuzzy Logic Energy Management for Multi Power Source Electric Vehicles

Author:

Kakouche KhoudirORCID,Rekioua ToufikORCID,Mezani Smail,Oubelaid AdelORCID,Rekioua Djamila,Blazek VojtechORCID,Prokop Lukas,Misak Stanislav,Bajaj MohitORCID,Ghoneim Sherif S. M.ORCID

Abstract

This paper proposes a novel Fuzzy-MPDTC control applied to a fuel cell battery electric vehicle whose traction is ensured using a permanent magnet synchronous motor (PMSM). On the traction side, model predictive direct torque control (MPDTC) is used to control PMSM torque, and guarantee minimum torque and current ripples while ensuring satisfactory speed tracking. On the sources side, an energy management strategy (EMS) based on fuzzy logic is proposed, it aims to distribute power over energy sources rationally and satisfy the load power demand. To assess these techniques, a driving cycle under different operating modes, namely cruising, acceleration, idling and regenerative braking is proposed. Real-time simulation is developed using the RT LAB platform and the obtained results match those obtained in numerical simulation using MATLAB/Simulink. The results show a good performance of the whole system, where the proposed MPDTC minimized the torque and flux ripples with 54.54% and 77%, respectively, compared to the conventional DTC and reduced the THD of the PMSM current with 53.37%. Furthermore, the proposed EMS based on fuzzy logic shows good performance and keeps the battery SOC within safe limits under the proposed speed profile and international NYCC driving cycle. These aforementioned results confirm the robustness and effectiveness of the proposed control techniques.

Funder

Taif University Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3