Abstract
In this paper, the dynamic event-triggered tracking control issue is studied for a class of unknown stochastic nonlinear systems with strict-feedback form. At first, neural networks (NNs) are used to approximate the unknown nonlinear functions. Then, a dynamic event-triggered controller (DETC) is designed through the adaptive backstepping method. Especially, the triggered threshold is dynamically adjusted. Compared with its corresponding static event-triggered mechanism (SETM), the dynamic event-triggered mechanism (DETM) can generate a larger execution interval and further save resources. Moreover, it is verified by two simulation examples that show that the closed-loop stochastic system signals are ultimately fourth moment semi-globally uniformly bounded (SGUUB).
Funder
National Natural Science Foundation of China
Natural Fundation of Xianyang Normal University under Grants
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献