Grape-Seed Procyanidin Extract (GSPE) Seasonal-Dependent Modulation of Glucose and Lipid Metabolism in the Liver of Healthy F344 Rats

Author:

Rodríguez Romina M.ORCID,Colom-Pellicer MarinaORCID,Blanco Jordi,Calvo EnriqueORCID,Aragonès GerardORCID,Mulero MiquelORCID

Abstract

Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds’ molecular effects, we carried out an animal study using photo-sensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acacα) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.g., diabetes, obesity, and cardiovascular disease). Furthermore, even though the GSPE effect is not restricted to a specific photoperiod, our results suggest a more significant effect in the L18 condition.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3