De Novo SNP Discovery and Genotyping of Masson Pine (Pinus massoniana Lamb.) via Genotyping-by-Sequencing

Author:

Li Peng-Le12,Yang Mo-Hua12ORCID,Jiang Xiao-Long12,Xiong Huan12,Duan Hui-Liang3ORCID,Zou Feng-Lan1,Xu Qian-Yu1,Wang Wei1,Hong Yong-Hui4,Lin Neng-Qing5

Affiliation:

1. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China

2. National Long Term Experimental Base of Forestry in Mid-Subtropics of China, Central South University of Forestry and Technology, Changsha 410004, China

3. Modern Education Technology Center, Central South University of Forestry and Technology, Changsha 410004, China

4. Longyan Forest Seed and Seedling Station, Longyan 350800, China

5. Shanghang Baisha State-Owned Forest Farm, Longyan 350800, China

Abstract

Masson pine (Pinus massoniana Lamb.) is an important tree species in China, but its genomic research has been hindered due to a large genome size. Genotyping-by-sequencing (GBS) has been a powerful approach to revolutionize the field of genomic research by facilitating the discovery of thousands of single nucleotide polymorphisms (SNPs) and genotyping in non-model organisms, at relatively low cost. Here, we performed de novo SNP discovery and genotyping in 299 trees via the genotyping-by-sequencing (GBS) approach. The effort produced 9.33 × 109 sequence reads, 265,525 SNP-associated contigs, and 6,739,240 raw SNPs. Further filtering and validation of the SNP-associated contigs for reliable SNPs were performed using blasting against the Pinus tabuliformis reference genome, functional annotation, technical replicates, and custom parameter settings for the optimization. The 159,372 SNP-associated contigs were aligned and validated for SNP prediction, in which 60,038 contigs were searched with hits in the NCBI nr database. We further improved the SNP discovery and genotyping with multiple technical replicates and custom parameter settings filtering. It was found that the use of blasting, annotation, technical replicates, and specific parameter settings removed many unreliable SNPs and identified 20,055 more precise and reliable SNPs from the 10,712 filtered contigs. We further demonstrated the informativeness of the identified SNPs in the inference of some genetic diversity and structure. These findings should be useful to stimulate genomic research and genomics-assisted breeding of Masson pine.

Funder

National Natural Science Foundation of China

Postgraduate Scientific Research Innovation Project of Hunan

Forestry Programs of Science and Technology in Fujian Province

Publisher

MDPI AG

Subject

Forestry

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3