Twelve Years into Genomic Selection in Forest Trees: Climbing the Slope of Enlightenment of Marker Assisted Tree Breeding

Author:

Grattapaglia DarioORCID

Abstract

Twelve years have passed since the early outlooks of applying genomic selection (GS) to forest tree breeding, initially based on deterministic simulations, soon followed by empirical reports. Given its solid projections for causing a paradigm shift in tree breeding practice in the years to come, GS went from a hot, somewhat hyped, topic to a fast-moving area of applied research and operational implementation worldwide. The hype cycle curve of emerging technologies introduced by Gartner Inc. in 1995, models the path a technology takes in terms of expectations of its value through time. Starting with a sudden and excessively positive “peak of inflated expectations” at its introduction, a technology that survives the “valley of disappointment” moves into maturity to climb the “slope of enlightenment”, to eventually reach the “plateau of productivity”. Following the pioneering steps of GS in animal breeding, we have surpassed the initial phases of the Gartner hype cycle and we are now climbing the slope of enlightenment towards a wide application of GS in forest tree breeding. By merging modern high-throughput DNA typing, time-proven quantitative genetics and mixed-model analysis, GS moved the focus away from the questionable concept of dissecting a complex, polygenic trait in its individual components for breeding advancement. Instead of trying to find the needle in a haystack, i.e., the “magic” gene in the complex and fluid genome, GS more efficiently and humbly “buys the whole haystack” of genomic effects to predict complex phenotypes, similarly to an exchange-traded fund that more efficiently “buys the whole market”. Tens of studies have now been published in forest trees showing that GS matches or surpasses the performance of phenotypic selection for growth and wood properties traits, enhancing the rate of genetic gain per unit time by increasing selection intensity, radically reducing generation interval and improving the accuracy of breeding values. Breeder-friendly and cost-effective SNP (single nucleotide polymorphism) genotyping platforms are now available for all mainstream plantation forest trees, but methods based on low-pass whole genome sequencing with imputation might further reduce genotyping costs. In this perspective, I provide answers to why GS will soon become the most efficient and effective way to carry out advanced tree breeding, and outline a simple pilot demonstration project that tree breeders can propose in their organization. While the fundamental properties of GS in tree breeding are now solidly established, strategic, logistics and financial aspects for the optimized adoption of GS are now the focus of attentions towards the plateau of productivity in the cycle, when this new breeding method will become fully established into routine tree improvement.

Funder

Fundação de Amparo à Pesquisa do Distrito Federal

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3