L*a*b*Fruits: A Rapid and Robust Outdoor Fruit Detection System Combining Bio-Inspired Features with One-Stage Deep Learning Networks

Author:

Kirk RaymondORCID,Cielniak GrzegorzORCID,Mangan MichaelORCID

Abstract

Automation of agricultural processes requires systems that can accurately detect and classify produce in real industrial environments that include variation in fruit appearance due to illumination, occlusion, seasons, weather conditions, etc. In this paper we combine a visual processing approach inspired by colour-opponent theory in humans with recent advancements in one-stage deep learning networks to accurately, rapidly and robustly detect ripe soft fruits (strawberries) in real industrial settings and using standard (RGB) camera input. The resultant system was tested on an existent data-set captured in controlled conditions as well our new real-world data-set captured on a real strawberry farm over two months. We utilise F 1 score, the harmonic mean of precision and recall, to show our system matches the state-of-the-art detection accuracy ( F 1 : 0.793 vs. 0.799) in controlled conditions; has greater generalisation and robustness to variation of spatial parameters (camera viewpoint) in the real-world data-set ( F 1 : 0.744); and at a fraction of the computational cost allowing classification at almost 30fps. We propose that the L*a*b*Fruits system addresses some of the most pressing limitations of current fruit detection systems and is well-suited to application in areas such as yield forecasting and harvesting. Beyond the target application in agriculture this work also provides a proof-of-principle whereby increased performance is achieved through analysis of the domain data, capturing features at the input level rather than simply increasing model complexity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3