Comparative Study of Predominantly Daytime and Nighttime Lightning Occurrences and Their Impact on Ionospheric Disturbances

Author:

Osei-Poku LouisORCID,Tang LongORCID,Chen WuORCID,Chen Mingli,Acheampong Akwasi Afrifa

Abstract

Space weather events adversely impact the operations of Global Navigation Satellite Systems (GNSS). Understanding space weather mechanisms, interactions in the atmosphere, and the extent of their impact are useful in developing prediction and mitigation models. In this study, the hourly lightning occurrence and its impact on ionospheric disturbances, quantified using the Rate of Total electron content Index (ROTI), were assessed. The linear correlation between diurnal lightning activity and ROTI in the coastal region of southern China where lightning predominates in the daytime was initially negative contrary to a positive correlation in southern Africa where lighting predominates in the evening. After appreciating and applying the physical processes of gravity waves, electromagnetic waves and the Trimpi effect arising from lightning activity, and the time delay impact they have on the ionosphere, the negative correlation was overturned to a positive one using cross-correlation. GNSS has demonstrated its capability of revealing the impact lightning has on the ionosphere at various times of the day.

Funder

Shenzhen Science and Technology Innovation Commission

Hong Kong RGC Joint Research Scheme

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3