Flight Planning for Survey-Grade 3D Reconstruction of Truss Bridges

Author:

Shang ZhexiongORCID,Shen ZhigangORCID

Abstract

Autonomous UAV 3D reconstruction has been widely used for infrastructure inspections and asset management. However, its applications on truss structures remain a challenging task due to geometric complexity and the severe self-occlusion problem of the truss structures when constrained by camera FOV, safety clearance, and flight duration. This paper proposes a new flight planning method to effectively address the self-occlusion problem to enable autonomous and efficient data acquisition for survey-grade 3D truss reconstruction. The proposed method contains two steps: First, identifying a minimal set of viewpoints achieves the maximal reconstruction quality at every observed surface of the truss geometry through an iterative optimization schema. Second, converting the optimal viewpoints into the shortest, collision-free flight trajectories while considering the UAV constraints. The computed flight path can also be implemented in a multi-UAV fashion. Evaluations of the proposed method include a synthetic truss bridge and a real-world truss bridge. The evaluation results suggested that the proposed approach outperforms the existing works in terms of 3D reconstruction quality while taking less time in both the inflight image acquisition and the post-flight 3D reconstruction.

Funder

Competitive Academic Agreement Program (CAAP) of Pipeline and Hazardous Materials Safety Administration (PHMSA) of U.S. Department of Transportation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3