Uniform Polishing Method of Spherical Lens Based on Material Removal Model of High-Speed Polishing Procedure

Author:

Zhang Hao,Wang Peng,Li Zexiao,Shen Yi,Zhang Xiaodong

Abstract

Although the high-speed polishing technology has been widely applied to obtain an ultra-smooth surface in the field of spherical optical manufacture, it is still mainly used in small-size or easily polished lenses. In the infrared optical system, large-size silicon lenses are often used to increase the luminous flux. As is known, the material is hard-polished, it is time-consuming to reduce the surface roughness by iterative polishing and it is difficult to avoid the form accuracy getting worse. To produce an ultra-smooth surface efficiently without destroying the figure, a scientific understanding of material removal in the high-speed polishing process is necessary, which would lead to the process being more deterministic. In this paper, a mathematical model of material removal is developed based on the classic Preston equation. The predicted results of the proposed model show good agreement with the experimental data. Further, a method to achieve uniform polishing can be addressed with a systematic analysis of the key factors affecting material removal and their contribution to spatial non-uniform removal. Finally, the experimental results indicate that the surface roughness of hard-polished spherical optics can be improved efficiently using the uniform polishing method without the surface figure being destroyed.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Tianjin

Postdoctoral Innovative Talent Support Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An innovative approach to measuring radius of curvature and form error of spherical optics with an interferometer;Digital Optical Technologies 2023;2023-08-07

2. A Polishing Processes Optimization Method for Ring-Pendulum Double-Sided Polisher;Applied Sciences;2023-07-05

3. Iterative blind deconvolution method for dwell-time adjustment;Applied Optics;2022-02-28

4. Thermal deformation suppression method for chalcogenide glass based on deep cryogenic treatment;10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing and Metrology Technologies;2021-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3