Author:
Zhang Hao,Wang Peng,Li Zexiao,Shen Yi,Zhang Xiaodong
Abstract
Although the high-speed polishing technology has been widely applied to obtain an ultra-smooth surface in the field of spherical optical manufacture, it is still mainly used in small-size or easily polished lenses. In the infrared optical system, large-size silicon lenses are often used to increase the luminous flux. As is known, the material is hard-polished, it is time-consuming to reduce the surface roughness by iterative polishing and it is difficult to avoid the form accuracy getting worse. To produce an ultra-smooth surface efficiently without destroying the figure, a scientific understanding of material removal in the high-speed polishing process is necessary, which would lead to the process being more deterministic. In this paper, a mathematical model of material removal is developed based on the classic Preston equation. The predicted results of the proposed model show good agreement with the experimental data. Further, a method to achieve uniform polishing can be addressed with a systematic analysis of the key factors affecting material removal and their contribution to spatial non-uniform removal. Finally, the experimental results indicate that the surface roughness of hard-polished spherical optics can be improved efficiently using the uniform polishing method without the surface figure being destroyed.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Tianjin
Postdoctoral Innovative Talent Support Program of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献