Author:
Shao Yuehjen E.,Hu Yu-Ting
Abstract
A statistical process control (SPC) chart is one of the most important techniques for monitoring a process. Typically, a certain root cause or a disturbance in a process would result in the presence of a systematic control chart pattern (CCP). Consequently, the effective recognition of CCPs has received considerable attention in recent years for their potential use in improving process quality. However, most studies have focused on the recognition of CCPs for SPC applications alone. Specifically, even though numerous studies have addressed the increased use of the SPC and engineering process control (EPC) mechanisms, very little research has discussed the recognition of CCPs for multiple-input multiple-output (MIMO) systems. It is much more difficult to recognize the CCPs of an MIMO system since two or more disturbances are simultaneously involved in the process. The purpose of this study is thus to propose several machine learning (ML) classifiers to overcome the difficulties in recognizing CCPs in MIMO systems. Because of their efficient and fast algorithms and effective classification performance, the considered ML classifiers include an artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and multivariate adaptive regression splines (MARS). Furthermore, one problem may arise due to the existence of embedded mixture CCPs (MCCPs) in MIMO systems. In contrast to using typical process outputs alone in a classifier, this study employs both process outputs and EPC compensation to ensure the effectiveness of CCP recognition. Experimental results reveal that the proposed classifiers are able to effectively recognize MCCPs for MIMO systems.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference42 articles.
1. Economic Control of Quality of Manufactured Product;Shewhart,1931
2. Statistical Quality Control Handbook,1956
3. Mixture control chart patterns recognition using independent component analysis and support vector machine
4. Identification of patterns in control charts for processes with statistically correlated noise
5. Estimation and generation of training patterns for control chart pattern recognition;Gutierrez;Comput. Ind. Eng.,2016
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献