Double Features Zeroing Neural Network Model for Solving the Pseudoninverse of a Complex-Valued Time-Varying Matrix

Author:

Lei Yihui,Dai Zhengqi,Liao BolinORCID,Xia Guangping,He Yongjun

Abstract

The solution of a complex-valued matrix pseudoinverse is one of the key steps in various science and engineering fields. Owing to its important roles, researchers had put forward many related algorithms. With the development of research, a time-varying matrix pseudoinverse received more attention than a time-invarying one, as we know that a zeroing neural network (ZNN) is an efficient method to calculate a pseudoinverse of a complex-valued time-varying matrix. Due to the initial ZNN (IZNN) and its extensions lacking a mechanism to deal with both convergence and robustness, that is, most existing research on ZNN models only studied the convergence and robustness, respectively. In order to simultaneously improve the double features (i.e., convergence and robustness) of ZNN in solving a complex-valued time-varying pseudoinverse, this paper puts forward a double features ZNN (DFZNN) model by adopting a specially designed time-varying parameter and a novel nonlinear activation function. Moreover, two nonlinear activation types of complex number are investigated. The global convergence, predefined time convergence, and robustness are proven in theory, and the upper bound of the predefined convergence time is formulated exactly. The results of the numerical simulation verify the theoretical proof, in contrast to the existing complex-valued ZNN models, the DFZNN model has shorter predefined convergence time in a zero noise state, and enhances robustness in different noise states. Both the theoretical and the empirical results show that the DFZNN model has better ability in solving a time-varying complex-valued matrix pseudoinverse. Finally, the proposed DFZNN model is used to track the trajectory of a manipulator, which further verifies the reliability of the model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3