Evolution of the Shadow Effect with Film Thickness and Substrate Conductivity on a Hemispherical Workpiece during Magnetron Sputtering

Author:

Liu HuaiyuanORCID,Ma DonglinORCID,Li Yantao,You Lina,Leng YongxiangORCID

Abstract

When depositing films on a complex workpiece surface by magnetron sputtering, the shadow effect occurs and causes the columnar structure to tilt toward the substrate owing to the oblique incident angle of the plasma flux, affecting the microstructure and properties of the films. Improving the surface diffusion could alleviate the shadow effect, whereas changing the energy of the deposited particles could improve surface diffusion. Different substrate conductivities could affect the energy of the deposited particles when they reach the substrate. In this study, Si (semiconductor) and SiO2 (insulator) sheets are mounted on the inner surface of a hemispherical workpiece, and Ti films with different thicknesses (adjusted by the deposition time) are deposited on the inner surface of the hemispherical workpiece by direct current magnetron sputtering. The results show that there is a threshold thickness and incident angle before the films are affected by the shadow effect. The threshold could be affected by the film thickness, the incident angle, and the conductivity of the substrate. The threshold would decrease as the film thickness or incidence angle increased or the conductivity of the substrate decreased. When the film thickness or incident angle does not reach the threshold, the film would not be affected by the shadow effect. In addition, the film deposited later would tilt the vertical columnar structure of the film deposited earlier. Owing to the different conductivities, the shadow effect manifest earlier for Ti films deposited on the insulator SiO2 than for films deposited on the semiconductor Si when the film thickness is >500 nm.

Funder

Science and Technology on Surface Physics and Chemistry Laboratory

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3