High-Temperature-Annealed Multi-Walled Carbon Nanotubes as High-Performance Conductive Agents for LiNi0.5Co0.2Mn0.3O2 Lithium-Ion Batteries

Author:

Guo Ziting,Zhong Shengwen,Cao Mihong,Zhong ZhengjunORCID,Xiao Qingmei,Huang Jinchao,Chen Jun

Abstract

In this work, the high yield of MWNTs was prepared by chemical vapor deposition (CVD) method, followed by annealing at 2000–2800 °C, and the effects of high annealing temperature on metal impurities and defects in multi-walled carbon nanotubes (MWNTs) was explored. Furthermore, the annealed MWNTs were dispersed using a sand mill to make a conductive slurry, and finally the cathode LiNi0.5Co0.2Mn0.3O2 was added to the assembled batteries, and the application of MWNTs (slurry) as conductive agents in LiNi0.5Co0.2Mn0.3O2 (NCM) cathode materials by sand-mill dispersion on the performance of lithium-ion batteries was investigated. The results indicate that high temperature annealing can effectively remove the residual metal impurities from MWNTs and the defects in MWNTs gradually decreases as the temperature rises. In addition, 2 wt% of MWNTs (slurry) in LiNi0.5Co0.2Mn0.3O2 is sufficient to form an electronically conductive network; as a result, the electronic conductivity and the high rates performance of the LiNi0.5Co0.2Mn0.3O2 batteries were greatly improved. The LiNi0.5Co0.2Mn0.3O2 battery with MWNTs slurries annealed at 2200 ℃ as a conductive additive displays the highest initial discharge capacity of 173.16 mAh·g−1 at 0.1 C. In addition, after 100 cycles, a capacity retention of 95.8% at 0.5 C and a discharge capacity of 121.75 mAh·g−1 at 5 C were observed. The multi-walled carbon nanotubes used as conductive agents in LiNi0.5Co0.2Mn0.3O2 (NCM) cathode materials show excellent battery behaviors, which would provide a new insight for the development of high-performance novel conductive agents in lithium-ion batteries.

Funder

National Natural Science Foundation of China

Scientific Research Foundation for Universities from the Education Bureau of Jiangxi Province

Natural Science Foundation of Jiangxi Province

Jiangxi University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3