Abstract
In this paper, cluster analysis and the XGBoost method are used to analyze the related symptoms of various types of young hypertensive patients, and finally guide patients to target treatment. Hypertension is a chronic disease that is common worldwide. The incidence of it is increasing, and the age level of patients is decreasing year by year. Effective treatment of youth hypertension has become a problem in the world. In this paper, young hypertension patients are classified into two groups by cluster analysis; the proportion of different hypertension related symptoms in each group of patients is then counted; and after verifying the prediction accuracy of the XGBoost model with 10-fold cross-validation, the accuracy of clustering is calculated by the XGBoost method. The final result shows that there are significant differences in symptomatic entropy between patients with type II hypertension and those with type I hypertension. Patients with type II hypertension are more likely to have symptoms of ventricular hypertrophy and microalbuminuria. Through this analysis, patients can have preventive treatment according to their own situation, and this can reduce the burden of medical expenses and prevent major diseases. Applying the data analysis into the medical field has great practical significance.
Funder
National Natural Science Foundation of China;Aviation Science Foundation of China;the Technical Research Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献