Machine learning applications on intratumoral heterogeneity in glioblastoma using single-cell RNA sequencing data

Author:

Arteaga-Arteaga Harold Brayan1ORCID,Candamil-Cortés Mariana S23ORCID,Breaux Brian4,Guillen-Rondon Pablo56ORCID,Orozco-Arias Simon27ORCID,Tabares-Soto Reinel17ORCID

Affiliation:

1. Universidad Autónoma de Manizales Departamento de Electrónica y Automatización, , Manizales, Caldas, Colombia

2. Universidad Autónoma de Manizales Departamento de Ciencias Computacionales, , Manizales, Caldas, Colombia

3. Universidad de Manizales Centro de Investigaciones en Medio Ambiente y Desarrollo — CIMAD, , Manizales, Caldas, Colombia

4. University of Houston Downtown Department of Computer Science, , Houston, Texas , United States of America

5. University of Houston Downtown Department of Computer Science, , Houston, Texas, United States of America

6. Biomedical and Energy Solutions LLC , Houston, Texas, United States of America

7. Universidad de Caldas Departamento de Sistemas e Informática, , Manizales, Caldas, Colombia

Abstract

Abstract Artificial intelligence is revolutionizing all fields that affect people’s lives and health. One of the most critical applications is in the study of tumors. It is the case of glioblastoma (GBM) that has behaviors that need to be understood to develop effective therapies. Due to advances in single-cell RNA sequencing (scRNA-seq), it is possible to understand the cellular and molecular heterogeneity in the GBM. Given that there are different cell groups in these tumors, there is a need to apply Machine Learning (ML) algorithms. It will allow extracting information to understand how cancer changes and broaden the search for effective treatments. We proposed multiple comparisons of ML algorithms to classify cell groups based on the GBM scRNA-seq data. This broad comparison spectrum can show the scientific-medical community which models can achieve the best performance in this task. In this work are classified the following cell groups: Tumor Core (TC), Tumor Periphery (TP) and Normal Periphery (NP), in binary and multi-class scenarios. This work presents the biomarker candidates found for the models with the best results. The analyses presented here allow us to verify the biomarker candidates to understand the genetic characteristics of GBM, which may be affected by a suitable identification of GBM heterogeneity. This work obtained for the four scenarios covered cross-validation results of $93.03\% \pm 5.37\%$, $97.42\% \pm 3.94\%$, $98.27\% \pm 1.81\%$ and $93.04\% \pm 6.88\%$ for the classification of TP versus TC, TP versus NP, NP versus TP and TC (TPC) and NP versus TP versus TC, respectively.

Funder

Universidad Autónoma de Manizales

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Biochemistry,General Medicine

Reference77 articles.

1. Management of glioblastoma: state of the art and future directions;Tan;CA Cancer J Clin,2020

2. Glioblastoma heterogeneity and cancer cell plasticity;Friedmann-Morvinski;Crit Rev Oncog,2014

3. Molecular targeted therapy of glioblastoma;Le Rhun;Cancer Treat Rev,2019

4. Current state of immunotherapy for glioblastoma;Lim;Nat Rev Clin Oncol,2018

5. CBTRUS statistical report: primary brain and other central nervous system Tumors diagnosed in the United States in 2014–2018;Ostrom;Neuro Oncol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3