Collaborative Task Allocation and Optimization Solution for Unmanned Aerial Vehicles in Search and Rescue

Author:

Han Dan123,Jiang Hao4,Wang Lifang2,Zhu Xinyu1,Chen Yaqing5,Yu Qizhou5

Affiliation:

1. Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan 618307, China

2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Organization Department of Party Committee, Civil Aviation Flight University of China, Guanghan 618307, China

5. Civil Aviation Administration of China Academy of Flight Technology and Safety, Civil Aviation Flight University of China, Guanghan 618307, China

Abstract

Earthquakes pose significant risks to national stability, endangering lives and causing substantial economic damage. This study tackles the urgent need for efficient post-earthquake relief in search and rescue (SAR) scenarios by proposing a multi-UAV cooperative rescue task allocation model. With consideration the unique requirements of post-earthquake rescue missions, the model aims to minimize the number of UAVs deployed, reduce rescue costs, and shorten the duration of rescue operations. We propose an innovative hybrid algorithm combining particle swarm optimization (PSO) and grey wolf optimizer (GWO), called the PSOGWO algorithm, to achieve the objectives of the model. This algorithm is enhanced by various strategies, including interval transformation, nonlinear convergence factor, individual update strategy, and dynamic weighting rules. A practical case study illustrates the use of our model and algorithm in reality and validates its effectiveness by comparing it to PSO and GWO. Moreover, a sensitivity analysis on UAV capacity highlights its impact on the overall rescue time and cost. The research results contribute to the advancement of vehicle-routing problem (VRP) models and algorithms for post-earthquake relief in SAR. Furthermore, it provides optimized relief distribution strategies for rescue decision-makers, thereby improving the efficiency and effectiveness of SAR operations.

Funder

2023 Central University Basic Research Business Funding Project—Youth Fund Project

Key Laboratory of flight Techniques and Flight Safety

Research Center for Scientific Development of higher Education institutions, Ministry of Education

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3