PVswin-YOLOv8s: UAV-Based Pedestrian and Vehicle Detection for Traffic Management in Smart Cities Using Improved YOLOv8

Author:

Tahir Noor Ul Ain1ORCID,Long Zhe1ORCID,Zhang Zuping1ORCID,Asim Muhammad23ORCID,ELAffendi Mohammed2ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. EIAS Data Science and Blockchain Laboratory, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

3. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China

Abstract

In smart cities, effective traffic congestion management hinges on adept pedestrian and vehicle detection. Unmanned Aerial Vehicles (UAVs) offer a solution with mobility, cost-effectiveness, and a wide field of view, and yet, optimizing recognition models is crucial to surmounting challenges posed by small and occluded objects. To address these issues, we utilize the YOLOv8s model and a Swin Transformer block and introduce the PVswin-YOLOv8s model for pedestrian and vehicle detection based on UAVs. Firstly, the backbone network of YOLOv8s incorporates the Swin Transformer model for global feature extraction for small object detection. Secondly, to address the challenge of missed detections, we opt to integrate the CBAM into the neck of the YOLOv8. Both the channel and the spatial attention modules are used in this addition because of how well they extract feature information flow across the network. Finally, we employ Soft-NMS to improve the accuracy of pedestrian and vehicle detection in occlusion situations. Soft-NMS increases performance and manages overlapped boundary boxes well. The proposed network reduced the fraction of small objects overlooked and enhanced model detection performance. Performance comparisons with different YOLO versions ( for example YOLOv3 extremely small, YOLOv5, YOLOv6, and YOLOv7), YOLOv8 variants (YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l), and classical object detectors (Faster-RCNN, Cascade R-CNN, RetinaNet, and CenterNet) were used to validate the superiority of the proposed PVswin-YOLOv8s model. The efficiency of the PVswin-YOLOv8s model was confirmed by the experimental findings, which showed a 4.8% increase in average detection accuracy (mAP) compared to YOLOv8s on the VisDrone2019 dataset.

Funder

Prince Sultan University

Publisher

MDPI AG

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3