Safety and Security-Specific Application of Multiple Drone Sensors at Movement Areas of an Aerodrome

Author:

Kovács Béla1ORCID,Vörös Fanni2ORCID,Vas Tímea3ORCID,Károly Krisztián3,Gajdos Máté3,Varga Zsófia1ORCID

Affiliation:

1. Institute of Cartography and Geoinformatics, Faculty of Informatics, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary

2. Department of Physical Geography, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary

3. Department of Aerospace Controller and Pilot Training, Faculty of Military Science and Officer Training, University of Public Service Ludovika, H-1083 Budapest, Hungary

Abstract

Nowadays, the public service practice applicability of drones and remote sensing sensors is being explored in almost all industrial and military areas. In the present research, in collaboration with different universities, we investigate the applicability of drones in airport procedures, assessing the various potential applications. By exploiting the data from remote sensing sensors, we aim to develop methodologies that can assist airport operations, including managing the risk of wildlife threats to runway safety, infrastructure maintenance, and foreign object debris (FOD) detection. Drones equipped with remote sensing sensors provide valuable insight into surface diagnostics, helping to assess aprons, taxiways, and runways. In addition, drones can enhance airport security with effective surveillance and threat detection capabilities, as well as provide data to support existing air traffic control models and systems. In this paper, we aim to present our experience with the potential airport applications of UAV high-resolution RGB, thermal, and LiDAR sensors. Through interdisciplinary collaboration and innovative methodologies, our research aims to revolutionize airport operations, safety, and security protocols, outlining a path toward a safer, more efficient airport ecosystem.

Funder

Ministry of Innovation and Technology of Hungary from the National Research, Development, and Innovation Fund

National Research, Development and Innovation Fund

Ministry of Innovation and Technology

Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3