Multi-Level Switching Control Scheme for Folding Wing VTOL UAV Based on Dynamic Allocation

Author:

Lin Zehuai1ORCID,Yan Binbin1ORCID,Zhang Tong2ORCID,Li Shaoyi1ORCID,Meng Zhongjie1,Liu Shuangxi34ORCID

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China

3. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

4. Hypersonic Technology Laboratory, National University of Defense Technology, Changsha 410073, China

Abstract

A folding wing vertical take-off and landing (VTOL) UAV is capable of transitioning between quadrotor and fixed-wing modes, but significant alterations occur in its dynamics model and maneuvering mode during the transformation process, thereby imposing greater demands on the adaptability of its control system. In this paper, a multi-level switching control scheme based on dynamic allocation is proposed for the deformation stage. Firstly, according to the physical characteristics of the wing folding mechanism, a dynamic model is established. The influence of the incoming flow on the rotors is considered, and the dynamic coupling characteristics in its transition process are analyzed. Secondly, by inverting the changes in rotor position and axial direction, a dynamic allocation algorithm for the rotors is designed. Then, the quadrotor controller and the fixed-wing controller are switched and mixed in multiple loops to form a multi-level switching control scheme. Finally, the simulation results show that the designed multi-level switching control scheme is effective and robust in forward and backward deformation processes, and its anti-interference ability is stronger compared with that of the control scheme without dynamic allocation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3