High-Altitude Precision Landing by Smartphone Video Guidance Sensor and Sensor Fusion

Author:

Silva Cotta Joao Leonardo1ORCID,Gutierrez Hector2ORCID,Bertaska Ivan R.3,Inness John P.3,Rakoczy John3

Affiliation:

1. Department of Aerospace Engineering, Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

2. Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

3. Control Systems Design and Analysis Branch, NASA Marshall Space Flight Center, Huntsville, AL 35812, USA

Abstract

This paper describes the deployment, integration, and demonstration of the Smartphone Video Guidance Sensor (SVGS) as novel technology for autonomous 6-DOF proximity maneuvers and high-altitude precision landing of UAVs via sensor fusion. The proposed approach uses a vision-based photogrammetric position and attitude sensor (SVGS) to support the precise automated landing of a UAV from an initial altitude above 100 m to ground, guided by an array of landing beacons. SVGS information is fused with other on-board sensors at the flight control unit to estimate the UAV’s position and attitude during landing relative to a ground coordinate system defined by the landing beacons. While the SVGS can provide mm-level absolute positioning accuracy depending on range and beacon dimensions, the proper operation of the SVGS requires a line of sight between the camera and the beacon, and readings can be disturbed by environmental lighting conditions and reflections. SVGS readings can therefore be intermittent, and their update rate is not deterministic since the SVGS runs on an Android device. The sensor fusion of the SVGS with on-board sensors enables an accurate and reliable update of the position and attitude estimates during landing, providing improved performance compared to state-of-art automated landing technology based on an infrared beacon, but its implementation must address the challenges mentioned above. The proposed technique also shows significant advantages compared with state-of-the-art sensors for High-Altitude Landing, such as those based on LIDAR.

Funder

NASA’s Marshall Space Flight Center

Dual-Use Technology Development

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3