Enhancing Quadrotor Control Robustness with Multi-Proportional–Integral–Derivative Self-Attention-Guided Deep Reinforcement Learning

Author:

Ren Yahui1,Zhu Feng1,Sui Shuaishuai1,Yi Zhengming2,Chen Kai1

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

2. College of Information and Intelligence, Hunan Agricultural University, Changsha 410073, China

Abstract

Deep reinforcement learning has demonstrated flexibility advantages in the control field of quadrotor aircraft. However, when there are sudden disturbances in the environment, especially special disturbances beyond experience, the algorithm often finds it difficult to maintain good control performance. Additionally, due to the randomness in the algorithm’s exploration of states, the model’s improvement efficiency during the training process is low and unstable. To address these issues, we propose a deep reinforcement learning framework guided by Multi-PID Self-Attention to tackle the challenges in the training speed and environmental adaptability of quadrotor aircraft control algorithms. In constructing the simulation experiment environment, we introduce multiple disturbance models to simulate complex situations in the real world. By combining the PID control strategy with deep reinforcement learning and utilizing the multi-head self-attention mechanism to optimize the state reward function in the simulation environment, this framework achieves an efficient and stable training process. This experiment aims to train a quadrotor simulation model to accurately fly to a predetermined position under various disturbance conditions and subsequently maintain a stable hovering state. The experimental results show that, compared with traditional deep reinforcement learning algorithms, this method achieves significant improvements in training efficiency and state exploration ability. At the same time, this study deeply analyzes the application effect of the algorithm in different complex environments, verifies its superior robustness and generalization ability in dealing with environmental disturbances, and provides a new solution for the intelligent control of quadrotor aircraft.

Funder

Hunan Provincial Department of Education Scientific Research Outstanding Youth Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3